

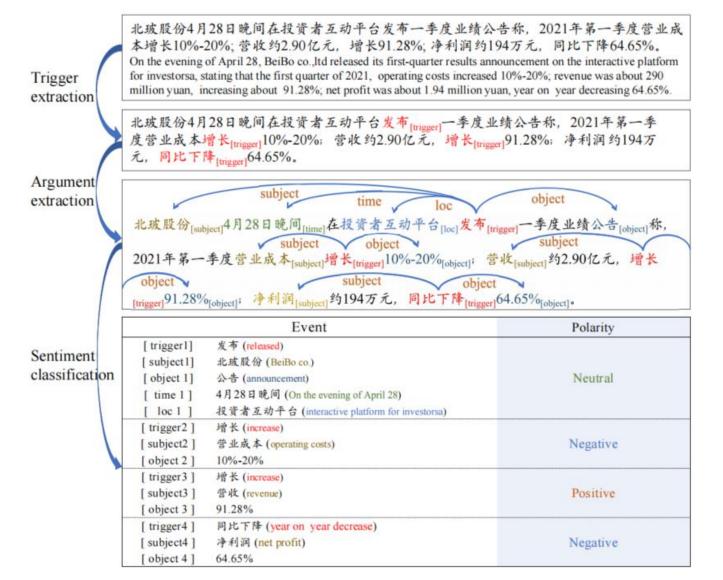
Enhancing Event-Level Sentiment Analysis with Structured Arguments

Qi Zhang Shanghai Key Laboratory of Multidimensional Information Processing, ECNU China School of Computer Science and Technology, East China Normal University Shanghai, China Jie Zhou* jie_zhou@fudan.edu.cn School of Computer Science, Fudan Univerisity Shanghai, China Qin Chen School of Computer Science and Technology, East China Normal University Shanghai, China

Qinchun Bai Shanghai Engineering Research Center of Open Distance Education, Shanghai Open University Shanghai, China Liang He School of Computer Science and Technology, East China Normal University Shanghai, China

SIGIR-2022

Dataset: https://github.com/zhangqi-here/E3SA



Reported by Dongdong Hu

Introduction

Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms

while the structured arguments (e.g., subject, object, time and location) that have potential effects on the sentiment are not well studied.

Method

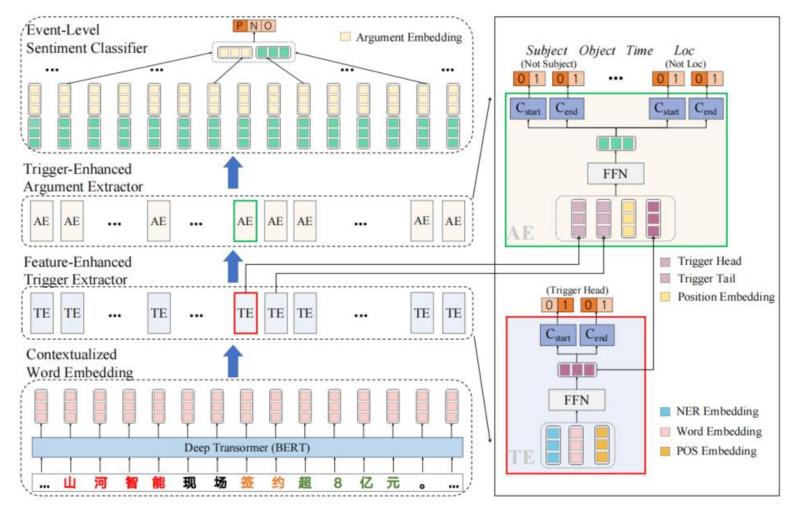
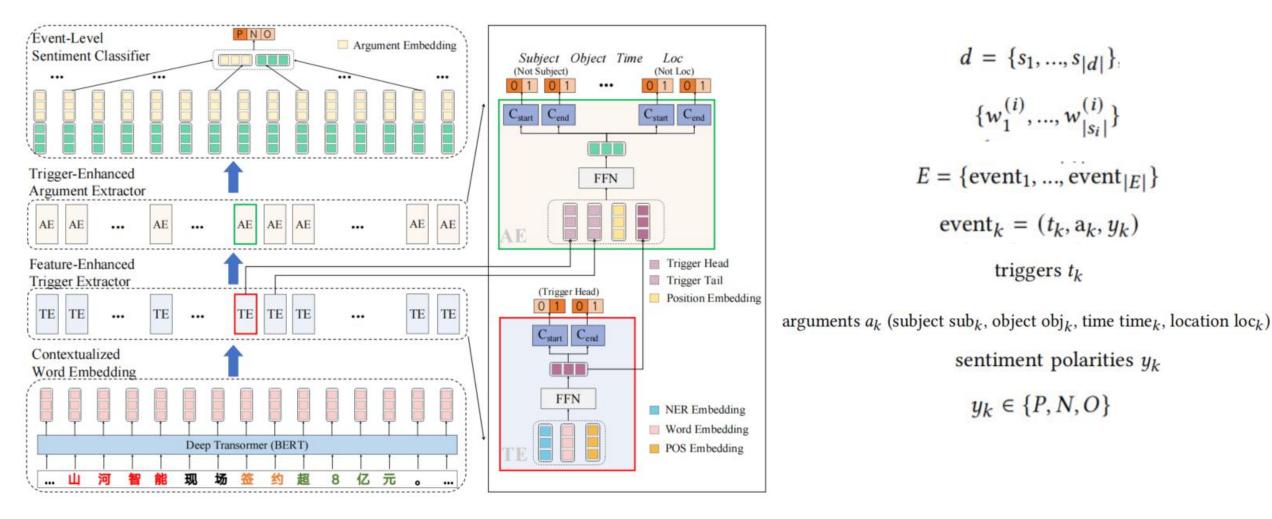



Figure 2: Our E³SA framework.

Figure 2: Our E^3 SA framework.

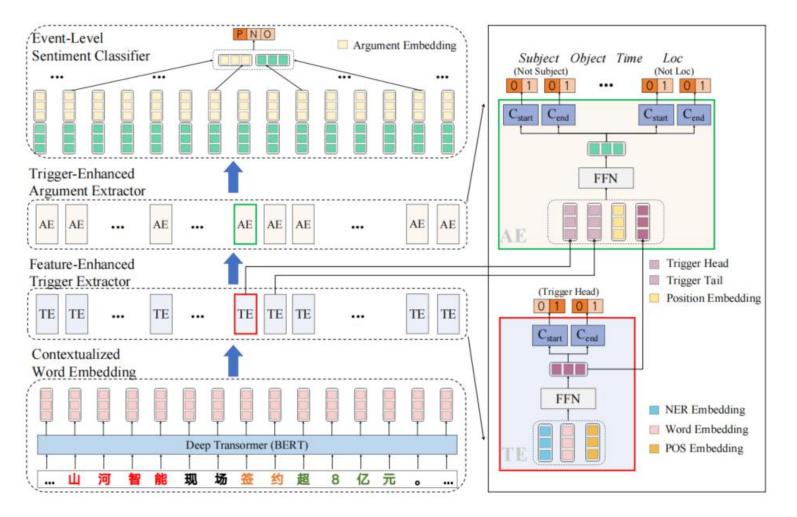
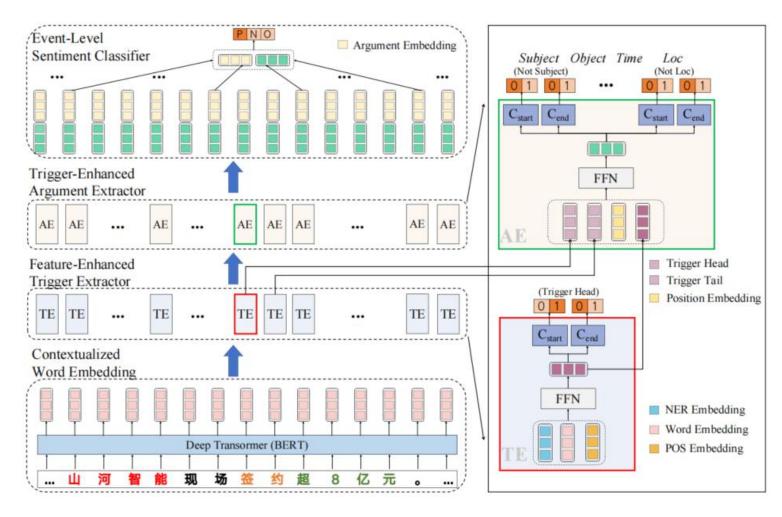


Figure 2: Our E³SA framework.


Feature-Enhanced Trigger Extractor [[CLS], $w_1, w_2, ..., w_m$, [SEP]] word embeddings { $x_{[CLS]}^w, x_1^w, x_2^w, ..., x_m^w, x_{[SEP]}^w$ } $x_i^f = FFN(concat(x_i^w, x_i^{pos}, x_i^{ner})).$ $p_i^{t^s} = Sigmoid(W^{t^s}x_i^f + b^{t^s}); p_i^{t^e} = Sigmoid(W^{t^e}x_i^f + b^{t^e})$

there ^s and ^e denote the start and end indices, W^{t^s} , W^{t^e} , b^{t^s} and t^e are the learnable weights.

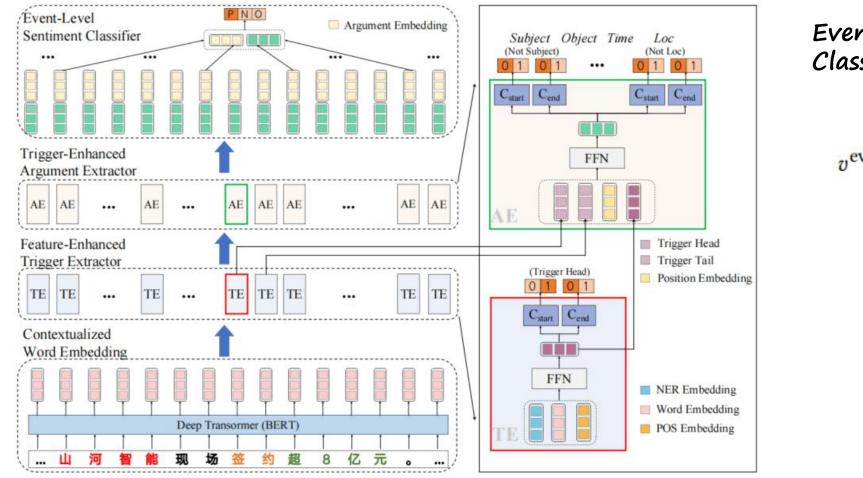
$$\mathcal{L}_t = \frac{1}{m} \sum_{i=1}^m \operatorname{CE}(y_i^{t^s}, p_i^{t^s}) + \operatorname{CE}(y_i^{t^e}, p_i^{t^e})$$

Trigger-Enhanced Argument Extractor

 $x_i^{t_k} = \text{FFN}(\text{concat}(x_i^f, x_{t_k^s}^f, x_{t_k^e}^f, x_i^{\text{position}_k}))$

where $x_{t_{L}}^{f}$ and $x_{t_{L}}^{f}$ is the head and tail representation of the trigger t_{k} obtained from x^{f} .

 $p_i^{r_k^s} = \text{Sigmoid}(W^{r^s} x_i^{t_k} + b^{r^s}); p_i^{r_k^e} = \text{Sigmoid}(W^{r^e} x_i^{t_k} + b^{r^e})$


The loss function for argument extraction is,

$$\mathcal{L}_a = \frac{1}{|E| \times |R| \times m} \sum_{k=1}^{|E|} \sum_{r \in |R|} \sum_{i=1}^m \operatorname{CE}(y_i^{r_k^s}, p_i^{r_k^s}) + \operatorname{CE}(y_i^{r_k^e}, p_i^{r_k^e})$$

where R is the set of roles, including subject, object, time and location.

Figure 2: Our E³SA framework.

Event-Level Sentiment Classifier $x_i^{r_k}$ $v^{\text{event}_k} = \text{MaxPooling}(\text{concat}(x_i^{t_k}, x_i^{r_k}))$ $p_k = \text{Softmax}(W^c v^{\text{event}_k} + b^c)$ $\mathcal{L}_c = \frac{1}{|E|} \sum_{k=1}^{|E|} \text{CE}(y_k, p_k)$ $\mathcal{L} = \mathcal{L}_t + \mathcal{L}_a + \mathcal{L}_c.$

Figure 2: Our E³SA framework.

Method

Table 1: The statistic information of our dataset.

	#Doc	#AvgLen	#E	#MultiE	#PosE	#NegE	#NeuE	#AvgS	#MultiP	#E-Across
Train	2142	148.78	4210	1281	2659	635	916	3.41	1134	474
Dev	500	151.75	962	293	591	154	216	3.41	265	104
Test	500	148.14	1005	317	662	138	205	3.51	280	122
Total	3142	149.15	6177	1891	3912	927	1337	3.42	1679	593

Table 2: The comparison with the existing datasets

Task	Dataset	Event	Doc	E-Across	MultiE	Sentiment
	ACE05	V	V	1.25	-	-
EE	MUC-4 Event	V	V	V	V	
	DocEDAG	V	V	V	V	-
	Twitter	-	- 1	-	-	\checkmark
ABSA	Rest 14		V	(1)	V	V
	Lap 14	-	V	-	V	V
Our task	Our dataset	V	V	V	V	V

Table 3: The results of event-level SA with extracted arguments. The best scores are marked with bold.

	Arguments										Continuent							
	Trigger			Sub			Obj		Time		Loc			Sentiment				
	Р	R	F1	Р	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1
DCFEE-O	41.69	27.59	33.21	43.40	14.73	21.99	50.79	19.30	27.97	71.90	48.46	57.89	0.00	0.00	0.00	19.75	13.07	15.73
DCFEE-M	33.87	44.64	38.52	34.66	19.00	24.55	40.81	25.17	31.14	58.62	59.91	59.26	16.67	9.09	11.76	14.60	19.24	16.60
GreedyDec	67.23	24.62	36.04	67.78	16.12	26.05	63.74	16.62	26.36	79.08	53.30	63.68	0.00	0.00	0.00	15.93	5.83	8.54
Doc2EDAG	38.94	16.49	23.17	62.11	14.03	22.89	58.75	14.03	22.65	56.25	11.89	19.64	0.00	0.00	0.00	30.73	13.01	18.28
BERT-QA	51.40	60.85	55.73	69.16	55.22	61.80	69.96	52.84	59.20	75.58	57.27	65.16	0.00	0.00	0.00	44.53	52.72	48.28
$E^3 SA$ (Ours)	54.79	62.82	58.53	69.83	60.80	65.00	64.68	55.02	59.46	89.54	60.35	72.11	66.67	18.18	28.57	48.24	55.30	51.53

Table 4: The results of event-level SA with gold arguments.

		P	R	F1	Acc
	MemNet	71.25	69.65	70.41	78.41
Non-BERT-based	ATAE_LSTM	74.84	67.92	70.72	80.00
Non-DER I-Dased	MGAN	76.37	69.95	72.45	81.59
	TNet	79.53	66.74	71.16	81.19
	BERT-SPC	82.27	79.92	80.71	85.17
BERT-based	AEN_BERT	79.94	73.11	75.93	83.18
	LCF-BERT	81.42	80.16	80.91	85.87
Ours	$E^3 SA$	82.57	80.24	81.32	86.17

Table 5: The results of ablation studies in terms of F1.

	T		C			
	Trigger	Sub	Obj	Time	Loc	Sentiment
$E^3 SA$ (Ours)	58.53	65.00	59.46	72.11	28.57	51.53
Pipeline	56.05	64.89	58.16	71.22	16.67	50.25
- Feature	58.35	62.13	58.68	69.36	24.06	50.08
- Trigger Info	57.93	54.41	55.43	67.36	18.24	51.04
- Argument Info	58.52	65.14	58.54	71.85	27.50	50.97
- Trigger+Argument	57.20	53.07	50.06	36.43	00.00	49.58

Thanks